首页> 外文OA文献 >Robust Real-Time Needle Tracking in 2-D Ultrasound Images Using Statistical Filtering
【2h】

Robust Real-Time Needle Tracking in 2-D Ultrasound Images Using Statistical Filtering

机译:基于统计滤波的二维超声图像鲁棒实时针跟踪

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Percutaneous image-guided tumor ablation is a minimally invasive surgical procedure for the treatment of malignant tumors using a needle-shaped ablation probe. Automating the insertion of a needle by using a robot could increase the accuracy and decrease the execution time of the procedure. Extracting the needle tip position from the ultrasound (US) images is of paramount importance for verifying that the needle is not approaching any forbidden regions (e.g., major vessels and ribs), and could also be used as a direct feedback signal to the robot inserting the needle. A method for estimating the needle tip has previously been developed combining a modified Hough transform, image filters, and machine learning. This paper improves that method by introducing a dynamic selection of the region of interest in the US images and filtering the tracking results using either a Kalman filter or a particle filter. Experiments where a biopsy needle has been inserted into a phantom by a robot have been conducted, guided by an infrared tracking system. The proposed method has been accurately evaluated by comparing its estimations with the needle tip's positions manually detected by a physician in the US images. The results show a significant improvement in precision and more than 85% reduction of 95th percentile of the error compared with the previous automatic approaches. The method runs in real time with a frame rate of 35.4 frames/s. The increased robustness and accuracy can make our algorithm usable in autonomous surgical systems for needle insertion.
机译:经皮图像引导的肿瘤消融术是使用针状消融探针治疗恶性肿瘤的微创手术程序。使用机械手自动插入针头可以提高准确性,并减少该过程的执行时间。从超声(US)图像中提取针尖位置对于验证针头没有接近任何禁止区域(例如大血管和肋骨)至关重要,并且还可以用作机器人插入的直接反馈信号针。先前已经开发了一种结合改进的霍夫变换,图像滤波器和机器学习的估计针尖的方法。本文通过在美国图像中引入感兴趣区域的动态选择并使用卡尔曼滤波器或粒子滤波器对跟踪结果进行滤波来改进该方法。在红外跟踪系统的指导下,进行了将活检针由机器人插入体模的实验。通过将其估计值与医师在美国图像中手动检测到的针尖位置进行比较,已对所提出的方法进行了准确的评估。结果表明,与以前的自动方法相比,精度显着提高,并且误差的95%降低了85%以上。该方法以35.4帧/秒的帧速率实时运行。更高的鲁棒性和准确性可以使我们的算法在自主手术系统中用于针头插入。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号